ivdon3@bk.ru
Получены разрешающие уравнения для определения напряженно-деформированного состояния толстостенной полимерной цилиндрической оболочки, находящейся в условиях плоского деформированного состояния с учетом изменения температуры и высокоэластических деформаций. В качестве закона, описывающего связь между напряжениями и деформациями ползучести, используется нелинейное уравнение Максвелла-Гуревича. Решение производится численно при помощи метода конечных элементов.
Ключевые слова: нелинейная ползучесть, полимерный цилиндр, высокоэластические деформации, уравнение Максвелла-Гуревича, метод конечных элементов, вязкоупругость, модуль высокоэластичности, плоское деформированное состояние, температура.деформированное состояние, температ
Решена обратная задача для толстостенного цилиндра, испытывающего температурные и силовые воздействия, находящегося в условиях плоской осесимметричной задачи теории упругости. Получен закон изменения модуля упругости, при котором цилиндр является равнонапряженным по теории прочности Мора. Задача свелась к дифференциальному уравнению первого порядка. Данное уравнение было решено численно, при помощи метода Рунге-Кутта четвертого порядка.
Ключевые слова: толстостенный цилиндр, оптимизация, неоднородность, метод Рунге-Кутта, температура, плоская осесимметричная задача