Study of a Cascade PD Controller for Tracking the Spatial Position of an Unmanned Aerial Vehicle
Abstract
Study of a Cascade PD Controller for Tracking the Spatial Position of an Unmanned Aerial Vehicle
Incoming article date: 13.03.2025The paper presents a simulation of flight control of an unmanned aerial vehicle (UAV). A distributed control system is proposed that sequentially includes internal and external circuits to control the state of motion of the aircraft. The control efficiency of a cascade PD controller (proportional-differential) is higher than that of a traditional PID controller (proportional-integral-differentiating). A new cascade control algorithm with a PD controller is proposed. First, the dynamics of the UAV is modeled based on the Newton-Euler method, then the state of motion of the device is controlled by a distributed control system based on cascaded levels of proportional derivatives of the internal and external contours. The simulation results show that the controller, developed on the basis of proportional-derivative control speed of internal and external circuits, is able to achieve fast tracking of the position and orientation of the UAV in case of external disturbances and has good control quality. The developed algorithm has increased the control efficiency by 5-7% compared to the traditional PID algorithm.
Keywords: Unmanned Aerial Vehicle, PID controller, Cascade PD controller, Algorithm Optimization, UAV Control Algorithm