Влияние многозарядных примесных центров на распределение потенциала в приповерхностной области полупроводника

С.А. Богданов, А.Г. Захаров, И.В. Писаренко

Технологический институт федерального государственного автономного образовательного учреждения высшего профессионального образования «Южный федеральный университет» в г. Таганроге.

Кристаллографические дефекты оказывают существенное влияние на характеристики полупроводниковых приборов, элементов интегральных схем, а также во многом определяют процент выхода годной продукции. Процесс изготовления структур твердотельной электроники включает последовательность сложных физико-химических операций, каждый этап которой сопровождается формированием различных, как желательных, так и нежелательных кристаллографических дефектов, характерных именно для данного этапа [1, 2]. Примеси и дефекты играют определяющую роль в рекомбинационных процессах.

Дефекты, взаимодействующие с носителями заряда, принято называть электрически активными. Некоторые из них образуют в запрещенной зоне полупроводника глубокие энергетические уровни (ГУ), которые характеризуются такими параметрами как энергия ионизации E_t , концентрация N_t , сечение захвата σ_t .

В работах [3 – 7] представлены физико-математические модели и проведено моделирование электрофизических свойств и характеристик структур металлполупроводник с барьером Шоттки, структур металл-диэлектрик-полупроводник, а также транзистора с металлической базой. При моделировании учитывалось наличие в запрещенной зоне полупроводника однозарядных ГУ, обусловленных электрически активными примесями и несовершенством его кристаллического строения, а также неоднородность их пространственного распределения. В ряде случаев энергетический спектр примесного полупроводника оказывается более сложным и характеризуется несколькими уровнями в запрещенной зоне [8, 9]. В частности, сложным спектром обладают атомы примеси переходных металлов в кремнии – медь, золото, железо, цинк и др (рис. 1).

Характеристики области пространственного заряда в полупроводниковой структуре, сформированной на основе полупроводника с ГУ, могут иметь существенные особенности, обусловленные перераспределениями носителей заряда. Это требует учета влияния ГУ при моделировании характеристик полупроводниковых приборов и структур, изготовленных на основе такого материала.

Известно, что атомы примесей, валентность которых отличается на единицу от валентности собственных атомов полупроводника, могут находиться только в двух состояниях – нейтральном и заряженном. При этом такой донор или акцептор, независимо от того, нейтрален он или заряжен, характеризуется одним энергетическим уровнем в запрещенной зоне полупроводника [4]. При одном и том же пределе растворимости примесей, формирующих в запрещенной зоне полупроводника ГУ, наибольшее влияние на распределение потенциала будут оказывать многозарядные ГУ.

В спектре многозарядных примесей проявление энергетических уровней, обусловленных их наличием в полупроводнике, связано с сильным взаимодействием зарядов примесных центров [10]. Так, если один из энергетических уровней E_t^i (i = 1, 2, ...m, m - количество энергетических уровней, обусловленных многозарядным центром в запрещенной зоне полупроводника) уже занят электроном, а примесный центр

Рис. 1. – Энергетические уровни различных примесей в кремнии [8]

захватывает еще один электрон на вышележащий энергетический уровень E_t^{i+1} , то следует считать, что энергия уровня E_t^i уже не может проявиться в опытах из-за неразличимости между двумя электронами примесного центра Действительно, если электрон с уровня E_t^i переводить в зону проводимости, то электрон с уровня E_t^{i+1} перейдет на освободившийся уровень E_t^i , передавая высвобождающуюся энергию электрону с уровня E_t^i . В результате на ионизацию израсходуется энергия, соответствующая $E_C - E_t^{i+1}$. Таким образом, существование энергетических уровень E_t^i .

Для многозарядных центров концентрации носителей заряда на уровнях E_t^i , взаимосвязаны и могут меняться при изменении положения уровня Ферми, температуры, величины поверхностного потенциала и т.п. Полная концентрация многозарядных примесных центров N может быть представлена в виде суммы концентраций многозарядных центров одного типа, находящихся в разных зарядовых состояниях [10]:

$$N = \sum_{i=1}^{m+1} N_{i-1} , \qquad (1)$$

где N_{i-1} - концентрация центров, характеризующихся величиной заряда ($-q \cdot (i-1)$), q - элементарный заряд.

При этом концентрация примесных центров M, соответствующая уровню с энергией E_t^i

$$M_{i} = N_{i} + N_{i-1}, (2)$$

следовательно, концентрация *i*-кратно ионизированных атомов может быть записана в виде произведения концентрации примесных центров M_i на вероятность их заполнения электроном f_i :

$$N_i = M_i f_i. \tag{3}$$

Решая систему уравнений (3) для i = 1, 2, ...m, с учетом (1) и (2) можно определить концентрации центров N_{i-1} с зарядом ($-q \cdot (i-1)$).

Рассмотрим примесь меди в кремнии. Примесные центры меди в кремнии могут находиться в четырех состояниях: нейтральном, однократно, двукратно и трехкратно отрицательно заряженном. Тогда выражение (1) примет вид:

$$N = N_0 + N_1 + N_2 + N_3,$$

а система уравнений (3) с учетом (1) и (2)

$$\begin{cases} N_0 = N - N_1 - N_2 - N_3, \\ N_1 = M_1 f_1 = (N_1 + N_0) f_1, \\ N_2 = M_2 f_2 = (N_2 + N_1) f_2, \\ N_3 = M_3 f_3 = (N_3 + N_2) f_3. \end{cases}$$
(4)

Решая систему уравнений (4) находим значения концентраций центров разной зарядовости:

$$N_3 = \frac{N \cdot f_1 f_2 f_3}{(1 - f_2)(1 - f_3) + f_1 f_2},$$
(5)

$$N_2 = \frac{N \cdot f_1 f_2}{1 - f_2 + f_1 f_2} \left(1 - \frac{f_1 f_2 f_3}{(1 - f_2)(1 - f_3) + f_1 f_2} \right),\tag{6}$$

$$N_{1} = N \cdot f_{1} \left(1 - \frac{f_{1}f_{2}}{1 - f_{2} + f_{1}f_{2}} \right) \left(1 - \frac{f_{1}f_{2}f_{3}}{(1 - f_{2})(1 - f_{3}) + f_{1}f_{2}} \right),$$
(7)

$$N_0 = N \cdot (1 - f_1) \left(1 - \frac{f_1 f_2}{1 - f_2 + f_1 f_2} \right) \left(1 - \frac{f_1 f_2 f_3}{(1 - f_2)(1 - f_3) + f_1 f_2} \right).$$
(8)

Полученные выражения (5) – (8) позволяют оценить концентрации трехкратно, двукратно, однократно ионизированных и электрически нейтральных атомов акцепторной примеси, формирующей в запрещенной зоне полупроводника три энергетических уровня E_t^3 , E_t^2 , E_t^1 соответственно. Выражения (5) – (8), могут быть упрощены в случае, если уровни E_t^3 , E_t^2 , E_t^1 отделены друг от друга энергетическими зазорами много большими kT, где k – постоянная Больцмана, T – абсолютная температура. Тогда, например, если уровень Ферми находится между E_t^2 и E_t^3 , но достаточно далеко от обоих, можно считать, что $f_1 \approx 1$, $f_2 \approx 1$, $f_3 \approx 0$ и из (5) – (8) получаем $N_3 \approx 0$, $N_2 \approx N$, $N_1 \approx 0$, $N_0 \approx 0$, т.е. все центры находятся в зарядовом состоянии (-2q).

Рассчитаем распределение потенциала $\varphi(x)$ в кремнии легированном фосфором с концентрацией $N_d = 10^{15}$ см⁻³, при наличии в нем примеси меди с $N = 10^{14}$ см⁻³, $E_t^1 = E_V + 0.24$ эВ, $E_t^2 = E_V + 0.4$ эВ, $E_t^3 = E_V + 0.53$ эВ [6] (см. рис. 1.), решив уравнение Пуассона:

$$\frac{\partial^2 \varphi}{\partial x^2} = -\frac{q}{\varepsilon \varepsilon_0} \left(p - n + N_d - N_1 - 2N_2 - 3N_3 \right), \tag{9}$$

где \mathcal{E} – диэлектрическая проницаемость полупроводника; \mathcal{E}_0 – электрическая постоянная; *p*, *n* – концентрации свободных дырок и электронов соответственно.

В первом приближении вероятность f_i заполнения электронами *i*-го акцепторного ГУ можно оценить выражением:

$$f_i = f(E_t^i, \varphi) = \frac{1}{1 + \exp\left(\frac{E_C - E_t^i - E_F - q\varphi}{kT}\right)},$$

Концентрации свободных носителей зарядов, а также ионизированных атомов мелкой донорной примеси в невырожденном полупроводнике можно определить, используя известную методику [8].

Распределения электростатического потенциала в приповерхностной области кремния для температуры T = 300 K, при величине поверхностного потенциала $\varphi_S = -0.55$ В приведены на рис. 2.

Рис. 2. – Распределение потенциала в области пространственного заряда полупроводника (1 – без ГУ в полупроводнике, 2 – в случае многозарядных ГУ, обусловленных примесью меди в кремнии).

Разработанная математическая модель позволяет оценить концентрации атомов многозарядных примесных центров, находящихся в различном зарядовом состоянии, а также их влияние на распределение потенциала в приповерхностной области полупроводника и как следует из [11, 12] актуальна при разработке перспективных элементов оптоэлектронных устройств.

Литература:

1. Адамов Ю.Ф., Верховцева А.В., Шурчков И.О., Балака Е.С. Анализ конструктивно-технологических ограничений при проектировании лавинных фотодиодов, работающих в режиме счета фотонов [Электронный ресурс] // «Инженерный вестник Дона», 2012, № 2. – Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2012/788 (доступ свободный) – Загл. с экрана. – Яз. рус.

2. Борискин В.С., Гулякович Г.Н., Северцев В.Н. Организация мелкосерийного производства микросхем [Электронный ресурс] // «Инженерный вестник Дона», 2012, № 2. – Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2012/789 (доступ свободный) – Загл. с экрана. – Яз. рус.

3. Богданов С.А., Захаров А.Г. Моделирование распределения потенциала в приповерхностной области полупроводника с глубокими уровнями [Текст] // Известия ТРТУ. Технические науки. – 2005. – № 9. – С. 217–222.

4. Богданов С.А., Захаров А.Г. Вольт-фарадные характеристики МДП-структур с учетом однозарядного глубокого энергетического уровня [Текст] // Известия вузов. Северо-Кавказский регион. - 2007. - № 5. - С. 22–24.

5. Богданов С.А., Захаров А.Г., Котов В.Н. Моделирование распределения потенциала в барьерах Шоттки транзистора с металлической базой [Текст] // Нано- и микросистемная техника. - 2007. - № 4. - С. 45–47.

6. Богданов С.А., Захаров А.Г., Лытюк А.А. Моделирование распределения потенциала в барьерах Шоттки с учетом краевых эффектов [Текст] // Нано- и микросистемная техника. - 2011. - № 5. - С. 12–15.

7. Богданов С.А., Захаров А.Г., Лытюк А.А. Диффузионная модель процесса деградации контактов металл-полупроводник с барьером Шоттки // Известия ЮФУ. Технические науки. – 2012. - № 1. – С. 53 – 58.

8. Зи С.М. Физика полупроводниковых приборов [Текст] / М.: Энергия, 1973. – 656 с.

9. Gassoumi M., Bluet J.M., Guillot G., Gaquière C., Maaref H. Characterization of deep levels in high electron mobility transistor by conductance deep level transient spectroscopy [Teκct] // Materials Science and Engineering: C. – 2008. T. 28. № 5-6. – P. 787 – 790.

10. Рывкин С.М. Фотоэлектрические явления в полупроводниках [Текст] / М.: Физматгиз, 1963. – 496 с.

11. Lin S., Zeng S., Cai X., Zhang J., Wu S., Sun L., Zhang B. Simulation of doping levels and deep levels in InGaN-based single-junction solar cell [Teκcτ] // Journal of Materials Science. - 2012. T. 47. № 11. - P. 4595-4603.

12. Ali A., Asghar M., Gouveas T., Hasan M.-A., Zaidi S.H. Influence of deep level defects on the performance of crystalline silicon solar cells: experimental and simulation study [Teκct] // Solar Energy Materials & Solar Cells. – 2011. T. 95. № 10. – P. 2805 – 2810.