

Разработка метода обнаружения опорных точек аэрофотоснимков

Наинг Линн Аунг, Е.М. Портнов

Национальный исследовательский университет «Московский Институт Электронной Техники»

Аннотация: В работе предлагается метод, основанный на оценочных характеристиках с использованием опорных точек, для сшивания кадров изображений, полученных с беспилотных летательных аппаратов. Анализируется многомаршрутная (площадная) аэрофотосъемка, позволяющая получать снимки местности с нескольких параллельных маршрутов. Разработанная авторами модель обнаружения опорных точек аэрофотоснимков, которые получены с любого типа носителя съемочной аппаратуры, может быть использована для широкого круга задач, связанных с реконструкцией антропогенных и природных объектов и построением по цифровым снимкам 3D-моделей для архитектуры и топографии.

Ключевые слова: аэрофотоснимки, распознавание изображения, обнаружение опорных точек, фотокарта, беспилотные летательные аппараты.

Введение. В настоящее время наблюдается тенденция использования беспилотных летательных аппаратов (БПЛА) для осуществления аэрофотосъемки местности в военной и гражданской областях с целью геологических изысканий; охраны окружающей среды; проектирования и строительства зданий и сооружений; создания топографических карт и GISсистем; археологических раскопок и т.д. [1,2].

Первым этапом разработки метода обнаружения опорных точек на аэрофотоснимках является исследование существующих методов распознавания аэрокосмических изображений.

Известные в настоящее время методы распознавания изображений основываются на математических моделях: применение корреляционных методов, основанных на представлении изображения случайной функцией двух переменных [3]; методы теории ременных передач, интерпретирующие изображение как вектор в п-мерном пространстве признаков [4]; структурные методы, представляющие образ в виде фразы некоторого формального языка [5], или в виде графа [6]. Анализ методов распознавания изображений

показывает, что при выборе модели следует исходить как из свойств самого изображения, так и из требований поставленной задачи распознавания.

Основные требования к решению задачи распознавания опорных объектов. Материалы аэрофотоснимков, поступающие на обработку, предварительно преобразуются в цифровые массивы из наборов отсчетов, снятых с фиксированным шагом (шагом дискретизации) по каждой из координатных осей. Каждый отсчет фиксирует уровень яркости (от 0 до 255) в данной точке изображения [7]. Содержательный анализ аэрофотоснимков показывает, что значимые объекты содержатся на фрагментах фотопленки размером не менее чем 10×10 мм. При дискретизации с шагом 20 отсчетов минимальным эталонным фрагментом следует считать размер 200×200.

Особенности изображений опорных объектов можно сформулировать следующим образом [8,9].

- Изображения содержат объекты, которые различимые области; наиболее характерны озера, реки, искусственные водоемы, лесные массивы, дороги.
- Объекты имеют характерную форму, позволяющую однозначно идентифицировать их на изображении: выступы береговой линии, изгибы реки и т.д.

Для описания и распознавания изображений необходимо, чтобы одни и те же структурные элементы на сопоставляемых изображениях имели близкие значения признаков, а различные – отличались как можно больше. Для количественного анализа разделяющих свойств признаков необходимо разработать соответствующие критерии.

Пусть на цифровых изображениях $F^1, F^2, ..., F^N$ одной и той же сцены в процессе сегментации выделены области $S_1^n, S_2^n, ..., S_m^n, ..., S_M^n$, где n=1,...,N. Будем считать, что области, соответствующие одному и тому же объекту

сцены имеют одинаковые индексы *m* на различных изображениях, т.е. области $S_m^1, S_m^2, ..., S_m^N$ отличаются лишь преобразованием масштаба, поворота и сдвига. С точки зрения величин признаков это должно означать, что признак a_{il}^k области S_i^k на изображении F^k и признак a_{jl}^n области S_j^n на изображении F^n должны иметь близкие значения для всех l=1,2,3,4, если i=j и существенно отличаться, если $i \neq j$. В качестве меры сходства признаков введем величину

$$t_{l}^{kn}(i,j) = \left| a_{il}^{k} - a_{jl}^{n} \right|.$$
⁽¹⁾

Определим максимальное значение этой величины для всех пар соответствующих областей S_i^k и S_j^n для i=j:

$$T_{l} = \max\{t_{l}^{kn}(i,j)\}; k = 1,...,N; n = 1,...,N; i = j = 1,...,M.$$
(2)

Таким образом, все значения $t_l^{kn}(i, j)$ при i=j попадают в интервал $[0, T_l]$. Можно определить вероятность попадания в этот интервал значений $t_l^{kn}(i, j)$ при $i \neq j$ следующим образом:

$$\xi_l = g_l / G. \tag{3}$$

где g_l – количество значений $t_l^{kn}(i,j) \in [0,T_l]$ при $i \neq j$, а $G = N \cdot M(M-1)$ – число пар областей S_i^k и S_j^n , где i = j = 1,...,M, $i \neq j$, k, n=1,...,N. Очевидно, чем меньше таких значений $t_l^{kn}(i,j)$, тем лучше разделяющие свойства признака a_{il} . Таким образом, ξ_l может служить критерием оценки разделяющих свойств данного признака. Эту величину можно рассматривать как вероятность ошибки классификации областей с помощью признака a_{il} . Для оценки совокупности признаков областей

 $a_{i1}, a_{i2}, a_{i3}, a_{i4}$ естественно использовать величину $\xi = \prod_{l=1}^{1} \xi_l$, определяющую вероятность ошибки классификации с помощью совокупности признаков.

Целесообразно применить аналогичный подход для исследования разделяющих свойств признаков отношенийю. Рассмотрим величину $U_i^{kn}(i,p,j,q) = |r_{ipl}^k - r_{jql}^n|$, характеризующую степень сходства признаков отношений r_{ipl}^{in} и r_{jql}^n для пар областей S_i^k , S_p^k на изображении F^k и S_j^k , S_q^n на изображении F^n . Для признаков с хорошими разделяющими свойствами значение $U_i^{kn}(i,p,j,q)$ должно быть близким к 0 при i=j и p=q и значительно отличаться от 0 при $i \neq j$ и $p \neq q$. Пусть максимальное значение этой характеристики при i=j и p=q равно

$$U_{l} = \max \left\{ U_{l}^{kn}(i, p, j, q) \right\}; \\ k = 1, ..., N; \quad n = 1, ..., N; \\ i = j = 1, ..., M; \quad p = q = 1, ..., M.$$
(4)

Тогда в качестве критерия оценки разделяющих свойств признаков отношений примем вероятность попадания в интервал $[0, U_i]$ значений $U_i^{kn}(i, p, j, q)$ при $i \neq p$ и $j \neq q$:

$$r_l = h_l / H, \tag{5}$$

где: h_l – количество значений $U_l^{kn}(i, p, j, q) \in [0, U_l]$ при i = p и $i \neq q$, а $H = N \cdot M(M-1)[M(M-1)-1]$ – число пар отношений между областями S_i^k, S_p^n и S_j^n, S_q^n , где: i, p, j, q = 1, ..., M, k, n = 1, ..., N. Для оценки совокупности признаков $r_{ip1}, ..., r_{ip10}$ отношений между областями S_i и S_p введем величину $r = \prod_{i=1}^{10} r_i$.

Количественная оценка разделяющих свойств разработанной системы признаков может быть сделана В результате экспериментального исследования последовательности различных изображений $F^1,...,F^N$ одной и той же сцены и определения значений принятых характеристик для этих признаков. Для проведения такого исследования разработан искусственный объект тестовых изображений, И получен ряд отличающихся преобразованиями масштаба, поворота и сдвига, при наличии проективных искажений. Схема получения тестовых снимков представлена на рис. 1. Изменение параметров съемки h, a и \beta позволяет моделировать различие условий получения снимков в реальных условиях: высоту орбиты, угол захода на объект, угол наклона оси камеры, соответственно. Таким образом, параметр *h* изменяет масштаб изображения, α – угол поворота, а β – величину проективных искажений. В табл.1 содержатся значения параметров преобразований для полученных тестовых изображений, представленных на рис. 2.

Вычислительный эксперимент на этих изображениях проведен в следующем порядке:

- 1. сегментация тестовых изображений с целью выделения областей $S_1^n, ..., S_M^n$ на каждом из $F^1, ..., F^N$;
- 2. вычисление признаков *a_{il}* и *r_{ijl}* для выделенных областей на всех изображениях;
- вычисление значений ξ_l для каждого из признаков областей a_{il}, где l=1,...,4;
- 4. вычисление значений r_l для каждого из признаков отношений r_{ijl} , где l=1,...,10.

 $\begin{array}{c|c} \hline \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (4) \\ (5) \\ (5) \\ (6) \\ (7) \\ (8)$

Рис. 2. – Тестовые изображения, исползуемые для исследования системы инвариантных признаков и алгоритма распознавания.

Таблица 1.

Параметры преобразований тестовых изображений

Номер	Высота камеры	Угол захода на	Отклонение оси
тестового	(в условных	объект (град.), α	камеры от вертикали
изображения	единицах), Н		(град.), β
1	5	0	0
2	3	0	0
3	5	45	0
4	4	30	0
5	4	60	0
6	4	120	0
7	5	0	31
8	4	0	37

снимков

Сегментация изображения проведена с помощью метода порогового группирования с предварительным сглаживанжем [10]. Результаты сегментации тестовых изображений представлены на рис.3. Нетрудно видеть, что не все элементы сцены присутствуют на каждом изображении; некоторые области отсутствуют вследствие преобразований и искажений. Результаты вычисления критерия ξ_l для признаков областей и r_l для признаков отношений представлены в табл.2 и табл.3, где содержатся также и величины интервалов эквивалентности для a_{il} и r_{ijl} , соответственно T_l и U_l . В табл.4 представлены результаты вычислительного эксперимента.

Рис. 3. – Примеры областей, выделенных на тестовых изображениях.

Таблица 2.

37				U		~	v
Xana	актер	истики	разделяющих	СВОИСТВ	признаков	оопас	теи
1 1000	and ep		разделиощии	•••••••	inplicementor	0001000	

	Признаки областей	Интервал	Критерий ξ_2	
		эквивалентности T_i		
1	a_{i1}	0,120	0,205	
2	a_{i2}	0,094	0,163	
3	a_{i3}	0,076	0,327	
4	a_{i4}	0,108	0,184	

Таблица 3.

Характеристики разделяющих свойств признаков отношений

r				
	Признаки отношений	Интервал	Критерий у2	
		эквивалентности U_i		
1	Z_{ij1}	0,117	0,134	
2	Z_{ij2}	0,099	0,201	
3	Z_{ij3}	0,163	0,176	
4	Z_{ij4}	0,075	0,108	
5	Z_{ij5}	0,214	0,093	
6	Z_{ij6}	0,106	0,072	
7	Z_{ij7}	0,082	0,127	
8	Z_{ij8}	0,172	0,130	

	изображений										
тестового изображения	н. Масштаб, <i>h</i> ₁ / <i>h</i> _i	ол поворота, α (град)	ол оси снимки, β(град)	Координаты опорной	точки, измеренные на изображении	лич. соотв. областей	Средние значения координат опорной точки, полученные из эксперимента Среднее отклонение координат для множества областей				
Å	Ō	y I	y I	x	y	Kc	x	У	Δx	Δy	Δ
1	1,0	0	0	36	49	Эталонное изображение					
2	0,8	0	0	33	74	6	32,63	74,37	0,295	0,178	0,380
3	1,33	0	0	18	54	3	18,50	51,59	0,339	0,541	0,651
4	0,8	45	0	43	53	3	43,31	52,88	0,538	0,751	0,997
5	1,33	30	0	35	61	4	34,78	60,35	0,209	0,291	0,407
6	1,33	60	0	45	74	4	45,22	74,83	0,402	0,281	0,502
7	1,33	120	0	46	22	4	45,37	30,55	0,247	0,335	0,462
8	0,8	0	31	36	44	4	37,35	44,36	1,091	0,784	1,406

Результаты определения координат опорной точки для тестовых

Заключение. Анализируя результаты проведенного эксперимента следует отметить, что с точки зрения принятых критериев разработанная система признаков имеет удовлетворительные разделяющие свойства, достаточные для распознавания изображений в условиях преобразований и Предложенную систему инвариантных признаков искажений. можно построении структурной модели изображения. использовать при Интерпретируя область S_i изображения F как элемент l_i структурной модели *М*, можно принять в качестве ее числовых признаков набор $\vec{a}_i = (a_{i1}, a_{i2}, a_{i3}, a_{i4})$ признаков областей. Аналогично, для пары областей S_i, S_i, рассматриваемых как связь b_{ii} в модели M, примем в качестве числовых признаков набор $\vec{r}_{ij} = (r_{ij1}, ..., r_{ij10})$ признаков отношений. Инвариантность этих признаков к преобразованиям изображения устойчивость И ИХ К искажениям

обеспечивают соответствующие свойства структурной модели M = (E, A, B, R), где: E={e_i}, $A = \{\vec{a}_i\}$, B={b_{ij}}, $R = \{\vec{r}_{ij}\}$

Работа выполнялась при финансовой поддержке Министерства науки и высшего образования РФ (проект № 05.605.21.0181).

Литература

1. Демин А.В., Денисов А.В. Программно-аппратный комплекс моделирования процесса съемки // Инженерный вестник Дона. - 2015. - №2. URL: ivdon.ru/uploads/article/pdf/IVD_70_Demin.pdf_2cd321836e.pdf

2. Добрынин Н.Ф., Пимшина Т.М. Использование космических средств позиционирования при обработке аэро и космической информации // Инженерный вестник Дона. - 2013. - №3. URL: ivdon.ru/magazine/archive/n3y2013/1835.

Гонсалес Р., Вудс Р. Цифровая обработка изображений. - М: 2012. - 375
 с.

4. Дуда Р. Распознавание образов и анализ сцен. . - М: 2012. - 392 с.

5. Фу К. Структурные методы в распознавании образов. - М: 2005. - 144 с.

6. Потапов А.С. Распознавание образов и машинное восприятие. - СПб: Политехника, 2007. - 548 с.

7. Yu L., Zhang D., Holden E.J. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images // Computers & Geosciences. - 2008. - №34. - pp. 838-848.

8. Tang S., Andriluka M., Schiele B. Detection and tracking of occluded people // Int. J. Comput. Vis. - 2014. - №110. - pp. 58-69.

9. Faraji M., Shanbehzadeh J., Nasrollahi K. Extremal regions detection guided by maxima of gradient magnitude // IEEE Transactions on Image Processing. - 2015. - №24. - pp. 5401-5415.

10. Liu Q., Li R., Hu H., Gu D. Extremal regions detection guided by maxima of gradient magnitude // Extracting semantic information from visual data: A survey.
2016. - №5. - pp. 8-20.

References

1. Demin A.V., Denisov A.V. Inzhenernyj vestnik Dona. 2015. №2. URL: ivdon.ru/uploads/article/pdf/IVD_70_Demin.pdf_2cd321836e.pdf

2. Dobrynin N.F., Pimshina T.M. Inzhenernyj vestnik Dona. 2013. №3. URL: ivdon.ru/magazine/archive/n3y2013/1835.

3. Gonsales R., Vuds R. Cifrovaja obrabotka izobrazhenij [Digital image processing]. M: 2012. 375 p.

4. Duda R. Raspoznavanie obrazov i analiz scen [Pattern recognition and scene analysis]. M: 2012. 392 p.

5. Fu K. Strukturnye metody v raspoznavanii obrazov [Structural methods in pattern recognition]. M: 2005. 144 p.

6. Potapov A.S. Raspoznavanie obrazov i mashinnoe vosprijatie [Pattern recognition and machine perception]. SPb: Politehnika, 2007. 548 p.

7. Yu L., Zhang D., Holden E.J. Computers & Geosciences. 2008. №34. pp. 838-848.

 8. Tang S., Andriluka M., Schiele B. Int. J. Comput. Vis. 2014. №110. pp. 58-69.

9. Faraji M., Shanbehzadeh J., Nasrollahi K. IEEE Transactions on Image Processing. 2015. №24. pp. 5401-5415.

10. Liu Q., Li R., Hu H., Gu D. Extracting semantic information from visual data: A survey. 2016. №5. pp. 8-20.