

Оценка поля радиационной нагрузки на биологическую ткань при гамма облучении

В. К. Яценко¹, С. В. Яценко², Т. А. Омельченко¹

¹Южный федеральный университет, Ростов-на-Дону ²Донской государственный технический университет, Ростов-на-Дону

результаты Аннотация: В работе приводятся вычислительного статистического эксперимента по оценке поля радиационной нагрузки на мягкую ткань организма человека при внешнем воздействии узкого нерасходящегося пучка фотонного гамма излучения. В качестве примера принята энергия фотона, попадающая в 102 группу энергетической оси константной лаборатории БАНАБ. Приводится дозовое распределение в цилиндре диаметром 20 и длиной 10 сантиметров. Применяется метод статистических испытаний, известный как Монте-Карло. Используется модификация метода с вычислением обратных функций. Показано, что вне пучка дозовая энергетическая ионизационная нагрузка спадает на два порядка, оставаясь конечной, что следует учитывать при терапевтических процедурах, в которых суммарная доза превышает смертельную дозу для здорового организма. Ключевые слова: Гамма – терапия, моделирование, Монте-Карло, поглощенная доза излучения.

Расширение энергетического диапазона фотонного рентгеновского и гамма излучения в медицине стало в последние десятилетия серьезным вкладом в прогресс лечебных методов онкологии.

В диагностике, при внешнем, относительно пациента расположении источника оценка радиационной энергетической нагрузки проводится экспериментально на специальных модельных объектах - фантомах. Они используются и при прогнозировании дозовой нагрузки при дистанционных методах лучевой терапии [1,2], когда источник также находится вне пациента.

В медицинских технологиях все чаще применяются методы математического моделирования, дающие положительный практический эффект [3,4]. Эта технология получает признание и в лучевой терапии, например, брахитерапии, при которой источник вводится в организм, экспериментальные методы заменяются модельными оценками. При необходимости достижения точности в прогнозировании дозы радиационной нагрузки порядка 4%, достоверность модели и точность расчетов выходит на первый план.

Физические процессы разрушения биологических тканей определяются энергией фотона, или жесткостью рентгеновского и гамма - излучения. Основными элементами биотканей являются кислород (от 30 до 70 % массовой доли) и углерод (от 10 до 60 %). Доли процента составляют водород, азот, магний, фосфор, сера, хлор, калий, железо. Кальций составляет 22,5 % костной ткани. Следует также отметить, что наиболее важные биологические объекты, с точки зрения диагностики и терапии, как-то мягкая, мускульная ткани, кровь содержат не менее 70 % кислорода.

Для кислорода и углерода следует учитывать следующие физические явления, возникающие при взаимодействии фотонного излучения с веществом. До энергий квантов в 20 - 30 кэВ преобладает фотоэффект, в той же области энергий наблюдается максимум рэлеевского (когерентного) рассеяния, составляющего не более 10 % от общего числа взаимодействий. В диапазоне 40 кэВ - 1 МэВ реализуется только комптоновское рассеяние с потерей части энергии на ионизацию молекул. При энергиях фотонов выше 1,25 МэВ сказывается процесс образования электрон - позитронных пар, который при энергии порядка 20 МэВ начинает преобладать над эффектом Комптона.

Процесс взаимодействия гамма частицы с атомами вещества определяется микроскопическим сечением взаимодействия, зависящим от энергии кванта и природы вещества [5]. Константы взаимодействия гамма квантов с веществом содержатся в специальных справочных базах данных [6-8]. Российская база данных расположена на сайте Физико-энергетического института, г. Обнинск, Калужской обл. [6] и содержит таблицы 127-групповых констант взаимодействия гамма квантов с веществом.

Микроскопическое сечение взаимодействия [5] σ_{M} связано со свойствами потока частиц и вещества соотношением

$$\sigma_m = \frac{\nu}{N_m \cdot F_N}$$

где *v*- количество провзаимодействовавших частиц, *N_m* - число мишеней (атомов вещества), *F_N* - флюенс частиц

Макроскопическое сечение взаимодействия Σ_m определяется, как произведение микроскопического сечения σ_m на массовую концентрацию мишеней N_m

$$\Sigma_m = \frac{\sigma_m \cdot N_m}{\rho}$$

Сечение взаимодействия для сложных веществ определяется по гипотезе о независимости взаимодействия, как сумма сечений для *N* элементов. Для смеси

$$\Sigma_{m_{CMECU}} = \rho_{CMECU} \cdot N_A \cdot \sum_{i=1}^{N} \frac{\sigma_i P_{mi}}{A_i}$$
(1)

где P_{mi} - массовая концентрация компонент сложного вещества, σ_i микроскопическое сечение взаимодействия для компонент, A_i – атомная масса компонент, ρ_{cmecu} – плотность сложного вещества, N_A – число Авогадро.

Все перечисленные величины можно найти в соответствующих таблицах. Если первоначальный пучок содержит *N*₀ частиц, тогда

$$N(x) = N_0 e^{-\int_{0}^{x} \Sigma_m(\xi, E) d\xi}$$
(2)

Отсюда отношение $\frac{N(x)}{N_0}$ – есть вероятность для частиц с энергией *Е* преодолеть расстояние *x* без взаимодействия.

Назначим, что узкий, нерасходящийся пучок гамма – излучения распространяется вдоль оси Z цилиндрической системы координат (r, θ, Z) Биологическая среда, ткань, изотропна, поэтому энергетическая доза облучения не зависит от угловой координаты θ . По пути следования частицы излучения с определенной вероятностью взаимодействуют с атомами вещества и изменяют свою энергию и траекторию движения. Движение гамма частицы происходит до

тех пор, пока фотоэффект не становится преобладающим событием, в результате чего частица прекращает свое существование. По литературным данным, подтверждаемым настоящим исследованием известно, что количество взаимодействий не превышает 10 – 15. Также будем считать, что частицы, вышедшие из указанного объема, назад не возвращаются, то есть граница абсолютно поглощающая. Распределение поглощенной в среде энергии частиц зависит от линейных координат Z и г. С ростом радиуса г кольцевая область вещества увеличивает свой объем и массу, что ведет к соответствующему изменению плотности поглощенной энергии.

Применим метод статистических испытаний (Монте-Карло) для моделирования процесса распространения излучения в среде [9]. Используем следующий расчетный алгоритм.

1 этап. По известной первоначальной энергии фотона определяем уровни энергии [6], достигаемые после 1,2 и т.д. взаимодействия с основным веществом (кислородом). Уровни переходов для первоначальной энергии 142,9 кэВ приводятся в таблице 1. Для известного массового состава смеси определяем по формуле (1) макроскопические сечения взаимодействия. Расчеты проводим для мягкой ткани: кислород – 0,708, водород – 0,102, углерод – 0,143, азот – 0,034; плотность 1,06 г/см³.

2 этап. По известному макроскопическому сечению определяем оптическую длину пути по функции распределения, следующей из (2). Используем метод обратных функций и генератор случайных чисел.

3 этап. По функции распределения угловой зависимости комптоновского рассеяния, определяемой формулой Клейна – Нишины – Тамма [10,11] находим угловую реализацию траектории после первого взаимодействия. В области первой точки накапливаем данные о поглощенной энергии. Далее, во второй точке и прилегающем объеме фиксируем величину поглощенной энергии. Вычисляем траекторию движения после второго взаимодействия и так далее, до

до тех пор, пока фотон не выйдет из объема или окончательно не поглотится. Факт окончательного поглощения определяем по достижении энергии в 20 кэВ.

Таблица 1.

Энергетические переходы фотона при взаимодействии. Начальная энергия

	Энергия после	Средняя энергия	Потеря энергии		
Номер	взаимодействия,	в груп-	при взаимодей-		
группы	эВ	пе, эВ	ствии, эВ		
102	117422.3	142890	25467.7		
104	97035.9	114860	17824.1		
105	86117.2	100840	14722.8		
106	75281.5	87375	12093.5		
107	65120.2	76140	11019.8		
108	57897.3	68157	10259.7		
109	50463.14	60178	9714.86		
110	42130.6	52205	10074.4		
111	33746.7	44242	10495.3		
113	21219.1	34078	12858.9		
116	7605.5	22121	14515.5		

142,9 кэВ.

4 этап. Проводим расчеты для каждой частицы, проходя этапы 2 – 3, поглощенной При накапливая 0 энергии. заданной ланные энергии первоначального кванта и заданной дозы количество квантов должно составлять $10^7 - 10^9$. Из-за этого при реализации данного алгоритма становится актуальной проблема применения соответствующих вычислительных мощностей. Обнадеживающие результаты нами получены при реализации алгоритма параллельных вычислений с применением процессоров нескольких видеоплат. Результаты вычислительного эксперимента приводятся в таблице 2.

Начальная группа фотона – 102. Средняя энергия фотона в группе – 142,9 кэВ. Интегральное сечение взаимодействия 0,165 см⁻¹. Вероятность прохождения слоя 10 см – 0,19. Флюенс частиц на входе в ткань в численном

эксперименте – 5977. Количество частиц, прошедших ткань без взаимодействия – 1446. Число частиц, испытавших столкновения – 4831. Число взаимодействий частиц – 11109. Среднее число столкновений на один фотон, принявший участие во взаимодействиях – 2,29.

Таблица 2

Дозовое распределение в мягкой ткани, мГр. Для общей, суммарной дозы облучения 1 Гр. Первичная энергия фотона 142 кэВ. Числовой

Направление <i>г</i> системы координат		0	0.03	0.03	0.02	0.03	0.04	0.04	0.02	0.03	0.03
		0	0.03	0.03	0.04	0.02	0.04	0.04	0.04	0.05	0.02
	0	0.04	0.07	0.05	0.05	0.07	0.07	0.06	0.06	0.05	
	0.01	0.09	0.04	0.1	0.09	0.13	0.11	0.1	0.08	0.08	
		0.02	0.09	0.15	0.13	0.22	0.24	0.17	0.15	0.12	0.17
		0.02	0.22	0.22	0.21	0.16	0.22	0.18	0.21	0.22	0.23
	•	0.08	0.27	0.44	0.57	0.66	0.52	0.64	0.6	0.67	0.63
		0.08	0.9	0.98	0.94	1.29	1.07	1.33	1.17	0.93	0.67
		6.8	3.63	3.68	4.55	3.35	3.98	2.3	2.78	2.56	1.84
		161.55	135.96	124.91	104.9	105.34	88.38	61.81	55.08	67.2	46.42
	0 Направление Z системы координат►										

эксперимент

В таблице 2 приводятся поглощенные дозы излучения, распределенные по кольцевым объемам, сечение которых плоскостью, проходящей через ось Z, и приводится в таблице, размер сечения 1 сантиметр на 1 сантиметр.

Нижний ряд соответствует осевому сечению.

Таблица 2 дает возможность сделать следующие выводы. Основная поглощенная доза концентрируется вдоль оси. Дополнительные расчеты показывают, что область находится в пределах миллиметра. Вдоль оси, в

пределах сантиметрового радиуса концентрируется 93% поглощенной дозы. В пределах же 2 сантиметров – 98%. Следует отметить, что стандартная терапия составляет 80 грей с фракционированием по 2 грея, то есть 20 сеансов, или по 2,4 грея – 15 сеансов. Смертельная доза для здорового человека 7 – 9 грей. При таких дозовых соотношениях учет рассеяния излучения становится актуальным при планировании терапии в пределах необходимой точности, указанной ранее.

Литература

1. Рудерман А. И., Вайнберг М. Ш., Жолкивер К. И. Дистанционная гамма - терапия злокачественных опухолей. М.: Медицина, 1977. 240 с.

2. Ратнер Т. Г., Фадеева М. А. Техническое и дозиметрическое обеспечение дистанционной гамма-терапии, 1982. 176 с.

3. Воронова Е. И., Муравей Л. А., Костиков Ю. А. Математикостатистические модели прогнозирования эффективности оперативного лечения некоторых заболеваний // Инженерный вестник Дона. 2013. №1 URL: ivdon.ru/ru/magazine/archive/n1y2013/1537

4. Семенистая Е. С., Максимов А. В. О подходе к построению модели дистальных сосудов пригодной для оценки артериального давления // Инженерный вестник Дона. 2012. №4 (часть 2). URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1469.

5. Панин М. П. Моделирование переноса излучения. М.: МИФИ, 2008. 212 с.

6. 127 - групповая библиотека данных о взаимодействии гамма - квантов с веществом // ippe.ru: Константная лаборатория БНАБ (ABBN) URL: ippe.ru/podr/abbn/libr/groupkon.php

7. X-Ray and Gamma-Ray Data // NIST Physical Measurement Laboratory URL: nist.gov/pml/data/xray_gammaray.cfm

8. D. Cullen, j. Hubbel, L. Kissel. EDPL97 – The Evaluated Photon Dada Library "97 version"/ UCRL-504000. v.6. Rev. 5. Publ/ by Lawrence Livermore

Laboratory, 1997

9. Ермаков С. М. Метод Монте-Карло и смежные вопросы. 2-е изд. М.: Главная редакция физико-математической литературы из-ва "Наука", 1975.

10. Подоляко С. В., Лукьянова Е. И. Численное моделирование трансформации рентгеновского излучения в объектах с учетом влияния формфакторов на угловое распределение фотонов // Препринты ИПМ им. М. В. Келдыша, № 6. М: 2004. С. 1-20.

11. J. H. Hubble, W. J. Vegele, E. A. Briggs, R. T. Bown, D. T. Cromer, R. J. Howerton. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. ref. data, vol. 4, No 3, 1975

References

1. Ruderman A. I., Vaynberg M. Sh., Zholkiver K. I. Distantsionnaya gamma terapiya zlokachestvennykh opukholey. [Distant gamma ray therapy of cancerous growth]. M.: Meditsina, 1977. 240 p.

2. Ratner T. G., Fadeeva M. A. Tekhnicheskoe i dozimetricheskoe obespechenie distantsionnoy gamma-terapii. [Technical and dosimetric support of distant gamma ray therapy]. 1982. 176 p.

3. Voronova E. I., Muravey L. A., Kostikov Yu. A. Inženernyj vestnik Dona (Rus). 2013. №1 URL: ivdon.ru/ru/magazine/archive/n1y2013/1537

4. Semenistaya E. S., Maksimov A. V. Inženernyj vestnik Dona (Rus). 2012. №4 (chast' 2). S. URL: ivdon.ru/ru/magazine/archive/n4p2y2012/1469.

5. Panin M. P. Modelirovanie perenosa izlucheniya. [Simulation of transfer radiation]. M.: MIFI, 2008. 212 p.

6. 127 - gruppovaya biblioteka dannykh o vzaimodeystvii gamma - kvantov s veshchestvom. [127 - group library of the data on the interaction of gamma - rays with matter]. ippe.ru: Konstantnaya laboratoriya ABBN URL: ippe.ru/podr/abbn/libr/groupkon.php

7. X-Ray and Gamma-Ray Data. NIST Physical Measurement Laboratory URL: nist.gov/pml/data/xray_gammaray.cfm

8. D. Cullen, j. Hubbel, L. Kissel. EDPL97 – The Evaluated Photon Dada Library "97 version"/ UCRL-504000. v.6. Rev. 5. Publ/ by Lawrence Livermore Laboratory, 1997

9. Ermakov S. M. Metod Monte-Karlo i smezhnye voprosy. [Monte Carlo simulation and adjacent problems]. 2-e izd. M.: Glavnaya redaktsiya fiziko-matematicheskoy literatury iz-va "Nauka", 1975

10. Podolyako S. V., Luk'yanova E. I. Chislennoe modelirovanie transformatsii rentgenovskogo izlucheniya v ob"ektakh s uchetom vliyaniya form-faktorov na uglovoe raspredelenie fotonov. [Numeric simulation X-ray transfer in objects with form-factor on photon angular distribution taking into account]. Preprinty IPM im. M. V. Keldysha, N_{0} 6. M: 2004. p. 1-20.

11. J. H. Hubble, W. J. Vegele, E. A. Briggs, R. T. Bown, D. T. Cromer, R. J. Howerton. Atomic form factors, incoherent scattering functions, and photon scattering cross sections. J. Phys. Chem. ref. data, vol. 4, No 3, 1975