

Новый класс магнитодиэлектрических материалов на основе

манганитов

Ю.В. Кабиров¹, В.Г. Гавриляченко¹, А.С. Богатин¹, К.Г. Абдулвахидов², Е.В. Чебанова³, Н.В. Пруцакова³, Е.Б. Русакова³

¹ Южный федеральный университет, Ростов-на-Дону ²МИЦ «Интеллектуальные материалы», Южный федеральный университет, ³Донской государственный технический университет, Ростов-на-Дону

Аннотация: Предложен новый класс материалов, изменяющих свою диэлектрическую проницаемость в зависимости от напряженности магнитного поля. Такие материалы представляют собой двухфазные композиты состава $La_{0.7}Sr_{0.3}MnO_3/I$, где I – изолирующая фаза, $Li_4P_2O_7$ или GeO₂. Соотношение компонентов находится вблизи порога перколяции: от 10 % до 20 % массовых. Диэлектрические свойства изучены в диапазоне частот измерительного поля от 1 *kHz* до 1 *MHz* в магнитных полях от 0 до 15 *kOe*. Образцы имеют индуктивный импеданс, их диэлектрическая проницаемость отрицательна. В магнитном поле диэлектрическая проницаемость возрастает по абсолютной величине и при комнатной температуре значения магнитодиэлектрического коэффициента достигают 28 %.

Ключевые слова: манганит лантана стронция, композитный материал, керамика, одношаговый синтез, магниторезистивность, порог перколяции, диэлектрическая проницаемость, барьерный слой, туннелирование, спиновая поляризация.

Введение

Магнитодиэлектрический (MD)эффект ЭТО изменение диэлектрической проницаемости материала под действием внешнего Такой эффект магнитного поля. может проявляться не только мультиферроиках, где имеется связь между электрическими и магнитными подсистемами, но и в керамических композитных системах [1-5]. Величина коэффициента MD эффекта обычно рассчитывается по формуле:

$$MD = \frac{\varepsilon(H) - \varepsilon(0)}{\varepsilon(0)} \cdot 100\% \quad (1) ,$$

где $\varepsilon(H)$ – диэлектрическая проницаемость во внешнем магнитном поле, $\varepsilon(0)$ – в отсутствии поля.

Удельные сопротивления подобных систем, представляющих собой диэлектрическую матрицу с помещенными в нее магнитными частицами, в области концентраций компонент вдалеке от порога перколяции, довольно велики - обычно значительно выше $10^2 Ohm \cdot m$ [1-4]. Например, в типичном В качестве диэлектрической матрицы композите, где использован $Ba_{0.95}Ca_{0.05}Ti_{0.90}Zr_{0.10}O_3$, а магнитные включения (кристаллиты) – это манганит La_{0.67}Sr_{0.33}MnO₃ [3], получены следующие данные: магнитодиэлектрический коэффициент отрицателен и достигает 31% в постоянном магнитном поле 0.6 Т. В сложных негомогенных ферритах $Ni_{0.9-y}Cu_yZn_{0.1}Fe_{1.98}O_{3.97}$ (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5) при y > 0.2 наблюдается MD эффект с положительным знаком коэффициента порядка 7 % в постоянном магнитном поле 0.35 Т, обусловленный эффектом Максвелла-Вагнера и наличием собственной магниторезистивности [4]. Согласно [5] внешнее магнитное поле влияет на фазовое разделение В манганите $La_0 Sr_0 MnO_3$, что приводит К колоссальному MD эффекту, обусловленному поляризацией Максвелл-Вагнера в диэлектрической антиферромагнитной матрице с проводящими ферромагнитными включениями. Однако мнение автора [6] о том, что для проявления магнитодиэлектрического эффекта в материалах с несобственной магниторезистивностью, одной недостаточно магниторезистивности, вероятно, не является правильным. Ведь изменение электрического сопротивления в магнитном поле приводит к изменению концентрации носителей заряда, что в свою очередь неизбежно отражается на значениях диэлектрической проницаемости. При ЭТОМ развитие поляризации Максвелла-Вагнера быть может малосущественно В силу высокой проводимости материалов.

С целью изучения магнитодиэлектрического отклика проводящих магниторезистивных композитов нами синтезированы керамические композиты на основе La_{0.7}Sr_{0.3}MnO₃ (LSMO) и пирофосфата лития (Li₄P₂O₇) с

концентрацией компонентов вблизи порога перколяции. Магнитодиэлектрические свойства аналогичных композитных составов с барьерным веществом GeO₂ были изучены нами ранее и представлены в работах [7-10]. Образцы таких магниторезистивных композитов имеют удельное сопротивление порядка 0.1 *Ohm*·*m* [8].

Методика эксперимента и образцы

Технология приготовления исследуемых магниторезистивных композитов 85%LSMO/15%Li₄P₂O₇ описана в работе [8]. Диаметр образцов составил 8-10 *mm* при толщине 2 *mm*. Диэлектрические исследования образцов композита 85%LSMO/15%Li₄P₂O₇ проведены нами с помощью измерителей иммитанса HIOKI 3270 и E7-20. Расчет диэлектрической проницаемости проводился по значениям емкости плоского конденсатора.

Синтезированная керамика тестировалась с помощью дифрактометра Bruker D2 Phaser с помощью излучения анода с длиной волны 1,5406 Å. Обработку рентгенограмм осуществляли полнопрофильным методом. Микроструктура поверхности керамики исследовалась с помощью растрового электронного микроскопа EVO 50 XVP с микроанализом. Характерная микроструктура поверхности образца 85%LSMO/15%Li₄P₂O₇ показана на рис.1. Образцы имеют значительную пористость: плотность образцов составляет около 0.7 от рентгеновской, и имеет значение 3.50 g/cm³. Установлено, что средние размеры кристаллитов LSMO составляют порядка 2 – 3 µm, а пространство между кристаллитами LSMO заполнено субмикронными частицами состава LaPO₄, Li₃PO₄, Li₄P₂O₇, что определено рентгеновской дифракцией, (рис.2). Можно аморфные отметить, что, несмотря на видимые формы микрокристаллитов, на рентгенограммах таких образцов наблюдаются отражения LSMO четкие дифракционные кристаллической фазы (пространственная группа *R*-3*c*, N_{2} 167 с параметрами ячейки *a* = 5.4855 Å,

c = 13.3495 Å). На рентгенограмме (помимо рефлексов LSMO) отмечаются отражения LiPO₃, Li₄P₂O₇ и фосфата лантана LaPO₄.

Рис. 1. – SEM-снимок поверхности скола образца композита

85%LSMO/15%Li₄P₂O₇

Результаты исследований и их обсуждение

Итак, приготовленная нами по одностадийной технологии композитная (выше 14%) керамика отличается высокими значениями магнитосопротивления в магнитном поле 15 kOe [8], а также имеет полупроводниковую (р-тип) проводимость с энергией активации порядка 0.20 eV. Отметим еще раз, что исследуемый композит имеет двухфазное строение: основной компонент его – высокопроводящая фаза манганита La_{0.7}Sr_{0.3}MnO₃, а филлером (диэлектрическим наполнителем), разделяющим кристаллиты манганита является Li₄P₂O₇. В перколяционной системе 85%LSMO/15%Li₄P₂O₇ соседние кристаллиты образуют ансамбль магнитнотуннельных контактов (МТК), проводимость которых зависит от взаимной ориентации магнитных моментов соседних кристаллитов, именно поэтому наличие внешнего магнитного поля отражается на транспортных свойствах образцов [8].

Рассмотрим далее диэлектрический отклик наших образцов на внешнее магнитное поле в диапазоне измерительных частот 1 kHz – 1 MHz. Экспериментальные и расчетные зависимости $\varepsilon'(f)$ в отсутствии магнитного поля и во внешнем поле 15 kOe показаны на рис.3. В наших экспериментах рост частоты f ведет к снижению ε' по модулю, а характер зависимости $\varepsilon'(f)$ не меняется при воздействии внешнего магнитного поля. Во всем частотном диапазоне импеданс образцов имеет индуктивный характер. При этом диэлектрическую проницаемость принято считать отрицательной [11-13]. Такую дисперсию обычно считают плазмоподобной, которая описывается с помощью модели Друде [12-13]:

$$\varepsilon'(\omega) = \varepsilon_{\infty} - \frac{\omega_{\delta}^2}{\omega^2 + \omega_{\tau}^2}$$
 (2),

где ω – угловая частота измерительного электромагнитного поля, ω_p – угловая плазменная частота, ω_{τ} – параметр затухания, $\varepsilon'(\omega)$ – частотная

зависимость действительной части диэлектрической проницаемости, ε_{∞} – высокочастотная диэлектрическая проницаемость, в первом приближении равная единице.

Рис. 3. – Зависимости действительной части диэлектрической проницаемости композита 85%LSMO/15%Li₄P₂O₇ от измерительной частоты в магнитном поле и без него.

На вставке – подробный масштаб зависимости є' до частоты 50 kHz

В результате моделирования (согласно модели Друде (2)) экспериментальной зависимости є (ω) для образца 85%LSMO/15%Li₄P₂O₇ получены следующие $ω_n = 2.40 \cdot 10^8 \ rad/s$ (без магнитного оценочные значения: поля). $ω_p = 2.80 \cdot 10^8 \, rad/s$ (во внешнем магнитном поле), $ω_{\tau}$ находится в интервале от $9.42 \cdot 10^5$ rad/s до $4.27 \cdot 10^6$ rad/s для областей низких и высоких частот соответственно. Моделирование экспериментальных данных показало, что параметр затухания зависит от измерительной частоты, что естественно для плазмоподобных [13]. Плазменная систем частота полупроводников

определяется тем же соотношением, что и в случае распространения электромагнитных волн в плазме [11]:

$$\omega_{p} = \sqrt{\frac{n_{eff}e^{2}}{m_{eff}\varepsilon_{0}}} \qquad (3) ,$$

где n_{eff} – эффективная концентрация электронов проводимости, m_{eff} – эффективная масса электрона, *е* – заряд электрона.

Если предполагать, что частотная зависимость диэлектрической проницаемости описывается моделью Друде, то в этом случае отношение значений диэлектрической проницаемости $\varepsilon(0)$ и $\varepsilon(H)$ будет равно отношению квадратов плазменных частот при фиксированной измерительной частоте, что следует из формулы (2). С другой стороны, согласно формуле (3) отношение квадратов частот $\frac{\omega_p(0)}{\omega_p(H)}$ равно отношению

эффективных концентраций носителей $\frac{n_{eff}(0)}{n_{eff}(I)}$, которое, в свою очередь, может быть определено отношением омических сопротивлений образцов $\frac{R(I)}{R(0)}$. Отношение характерных значений активного сопротивления образца (обусловленного плотностью носителей заряда) при постоянном токе в магнитном поле $R(H=15 \ kOe) = 1.75 \ Ohm$ к значениям сопротивления образца без поля $R(0) = 2.11 \ Ohm$, в пределах экспериментальных ошибок показывает близкие значения к значениям отношений диэлектрической проницаемости, взятых при частоте 10 kHz в постоянном магнитном поле и без него, $R(H)/R(0) \sim \epsilon(0)/\epsilon(H) \sim 0.83 - 0.86$. Таким образом, отношение значений диэлектрической проницаемости, полученных из соотношения Друде, с одной стороны, приблизительно равно отношению значений омических сопротивлений (которые обратно пропорциональны n_{eff}), измеренных в

магнитном поле и в его отсутствии. Этот факт показывает возможность использования модели Друде для описания диэлектрической проницаемости композитах 85%LSMO/15%Li₄P₂O₇. Оценки выполнены при условии В неизменных подвижности и эффективной массы носителей заряда. Следует повышенное значение отметить частот затухания для композита 85%LSMO/15%Li₄P₂O₇ ПО сравнению С частотами ДЛЯ состава 80%(La_{0.7}Sr_{0.3}MnO₃)/20%GeO₂ [7]. Этот факт может быть связан с наличием в композите 85%LSMO/15%Li₄P₂O₇ подвижных ионов лития.

Зависимость $\varepsilon'(H)$ показана на рис.4. Отметим, что зависимости $\varepsilon'(H)$ имеют линейный характер, что согласуется с данными работы [8], в которой отмечается, что проводимость образцов 80%LSMO/20GeO₂ растет линейно в пределах значений напряженности магнитного поля до 15 *kOe*.

Рис. 4. – Зависимость диэлектрической проницаемости композита 85%LSMO/15%Li₄P₂O₇ от напряженности магнитного поля при различных частотах измерительного поля

Поэтому для наших магниторезистивных композитов 85%LSMO/15%Li₄P₂O₇, свойства которых обусловлены межгранульным спин-зависимым туннелированием электронов в магнитном поле, можно предположить, что с

увеличением напряженности магнитного поля линейно возрастает эффективная концентрация носителей. Это соответствует экспериментально наблюдаемому увеличению проводимости.

В наших образцах, по соотношению компонентов, близкому к порогу перколяции, наблюдается существенная зависимость отрицательной диэлектрической проницаемости от напряженности магнитного поля, что, следуя традиции, можно назвать магнитодиэлектрическим эффектом (*MD*). Зависимость коэффициента *MD* от частоты измерительного поля в магнитных полях напряженностью до 15 *kOe* показана на рис.5.

Рис. 5. – Зависимость магнитодиэлектрического коэффициента для композита 85%LSMO/15%Li₄P₂O₇ от частоты измерительного поля

Следует отметить значительную частотную зависимость коэффициента *MD* в исследуемом диапазоне частот. Максимальное значение *MD* достигается при значении частоты 10 *kHz*.

Заключение

Нами установлено, синтезированные образцы что 85%LSMO/15%Li₄P₂O₇, (как и 80%LSMO/20%GeO₂), отвечающие порогу перколяции, в диапазоне частот измерительного поля от 1 kHz до 1 MHzимеют импеданс индуктивного типа, т.е. диэлектрическую проницаемость можно считать отрицательной. Ее дисперсия является плазмоподобной и описывается в рамках модели Друде. Количественные оценки влияния магнитного поля на диэлектрическую проницаемость с отрицательным знаком показывают возможность использования модели Друде для описания зависимостей $\varepsilon(f)$ BO внешнем магнитном поле В композитах 85%LSMO/15%Li₄P₂O₇ и 80%LSMO/20%GeO₂. В магнитном поле напряженностью 15 kOe в керамических образцах 85%LSMO/15%Li₄P₂O₇ эффект коэффициентом, %. проявляется MDдостигающим 28 с Магнитодиэлектрические свойства обусловлены изменением концентрации спин-поляризованных носителей заряда, преодолевающих МТК при возрастании магнитного поля, т.е. отрицательным магниторезистивным эффектом. Это приводит к росту плазменной частоты при увеличении напряженности магнитного поля и к изменению диэлектрического отклика магниторезистивных образцов. Подобные композиты могут быть новым классом твердотельных материалов, образцы которых обладают управляемым с помощью постоянного магнитного поля импедансом индуктивного типа, связанного с диэлектрической проницаемостью.

Литература

Lawes G., Tackett R., Adhikary B., and Naik R., Masala O. and Seshadri R.
 Positive and negative magnetocapacitance in magnetic nanoparticle systems //
 Appl. Phys. Lett. 2006. V. 88. pp. 242903-1 – 242903-3.

2. Thirmal Ch., Nayek Ch., Murugavel P., and Subramanian V. Magnetic, dielectric and magnetodielectric properties of PVDF-La_{0.7}Sr_{0.3}MnO₃ polymer nanocomposite film // AIP Advances. 2013. V. 3. №11. pp. 112109-1 – 112109-8.

3. Chavan S.D., Chavan S.G., Mane S.S., Joshi P.B., Salunkhe D.J. Dielectric and magnetodielectric properties of LSMO-BCZT composites // J. Mater. Sci: Mater. Electron. 2016. V. 27. pp. 1254 – 1260.

4. Mondal R.A., Murty B.S., Murhty V.R.K. Origin of magnetocapacitance in chemically homogeneous and inhomogeneous ferrites // Phys. Chem. Chem. Phys. 2015. V. 17. pp. 2432 – 2437.

5. Мамин Р.Ф., Игами Т., Мартон Ж., Мигачев С.А., Садыков М.Ф. Гигантская диэлектрическая восприимчивость и магнитоемкостный эффект в манганитах при комнатной температуре // Письма в ЖЭТФ. 2007. Т. 86. В. 10. С. 731 – 735.

6. Catalan G. Magnetocapacitance without magnetoelectric coupling // Appl. Phys. Lett. 2006. V. 88. pp. 102902 – 102902.

7. Кабиров Ю.В., Гавриляченко В.Г., Богатин А.С., Ситало Е.И, Яценко В.К. влияние магнитного поля на диэлектрическую проницаемость композита 80%La_{0.7}Sr_{0.3}MnO₃/20%GeO₂ // ФТТ. 2018. Т. 60. В. 1. С. 61 – 64.

8. Кабиров Ю.В., Гавриляченко В.Г., Богатин А.С., Лянгузов Н.В., Гавриляченко Т.В., Медведев Б.С. Отрицательная магниторезистивность композитной керамики $(1 - x)La_{0.7}Sr_{0.3}MnO_3/x(GeO_2, Li_4P_2O_7)$ // Письма в ЖТФ. 2016. Т. 42. В. 6. С. 1 – 5.

9. Кабиров Ю.В., Гавриляченко В.Г., Богатин А.С., Чупахина Т.И., Русакова Е.Б., Чебанова Е.В. Стеклокомпозиты на основе магнитного полупроводника La_{0,67}Sr_{0,33}MnO₃ как функциональные материалы // Инженерный вестник Дона, 2014, №3. URL: ivdon.ru/ru/magazine/archive/n4y2014/2605.

10. Кабиров Ю.В., Гавриляченко В.Г., Богатин А.С., Чупахина Т.И., Чебанова Е.В., Русакова Е.Б. Композитные керамические материалы с отрицательной и положительной магноторезистивностью на основе La_{0.7}Sr_{0.3}MnO₃ // Инженерный вестник Дона, 2015, №4 URL: ivdon.ru/ru/magazine/archive/n4y2015/3345.

11. Займан Дж. Принципы теории твердого тела. М.: Мир, 1974. 472 с.

 Новиков В.В., Wojciechowski К.W. Частотные зависимости диэлектрических свойств композитов типа металл-диэлектрик // ФТТ. 2002.
 Т. 44. В. 11. С. 1963 – 1969.

13. Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1967. 684 с.

References

1. Lawes G., Tackett R., Adhikary B., and Naik R., Masala O. and Seshadri R. Appl. Phys. Lett. 2006. V. 88. pp. 242903-1 – 242903-3.

Thirmal Ch., Nayek Ch., Murugavel P., and Subramanian V. AIP Advances.
 2013. V. 3. №11. pp. 112109-1 – 112109-8.

3. Chavan S.D., Chavan S.G., Mane S.S., Joshi P.B., Salunkhe D.J. J. Mater. Sci: Mater. Electron. 2016. V. 27. pp. 1254 – 1260.

4. Mondal R.A., Murty B.S., Murhty V.R.K. Phys. Chem. Chem. Phys. 2015.
V. 17. pp. 2432 – 2437.

5. Mamin R.F., Igami T., Marton Zh., Migachev S.A., Sadykov M.F. Pis'ma v ZhETF. 2007. T. 86(10). pp. 731 – 735.

6. Catalan G. Appl. Phys. Lett. 2006. V. 88. pp. 102902 – 102902.

Kabirov Yu.V., Gavrilyachenko V.G., Bogatin A.S., Sitalo E.I, Yatsenko V.K. FTT. 2018. V. 60(1). pp. 61 – 64.

8. Kabirov Yu.V., Gavrilyachenko V.G., Bogatin A.S., Lyanguzov N.V., Gavrilyachenko T.V., Medvedev B.S. Pis'ma v ZhTF. 2016. V. 42(6). pp. 1 – 5.

9. Kabirov Yu.V., Gavrilyachenko V.G., Bogatin A.S., Chupakhina T.I., Rusakova E.B., Chebanova E.V. Inženernyj vestnik Dona (Rus), 2014, №3. URL: ivdon.ru/ru/magazine/archive/n4y2014/2605.

10. Kabirov Yu.V., Gavrilyachenko V.G., Bogatin A.S., Chupakhina T.I., Chebanova E.V., Rusakova E.B. Inženernyj vestnik Dona (Rus), 2015, №4. URL: ivdon.ru/ru/magazine/archive/n4y2015/3345.

11. Zayman Dzh. Printsipy teorii tverdogo tela [Principles of the solid-state theory]. M.: Mir, 1974. 472 p.

12. Novikov V.V., Wojciechowski K.W. FTT. V. 44(11). pp. 1963 - 1969.

13. Ginzburg V.L. Rasprostranenie elektromagnitnykh voln v plazme. [Propagation of electromagnetic waves in a plasma]. M.: Nauka, 1967. 684 p.